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1. 

Many numerical methods have been developed to investigate the natural vibration
frequency of a bending bar [1–3]. Among them the Rayleigh–Ritz method is well
known and significant. In this method, by minimizing the Rayleigh quotient with
respect to relevant coefficients in the deflection function, the eigenvalue equation
can be obtained [1–3]. On the other hand, one can use the differential equation
to solve the problem, e.g., the shooting method [4, 5]. Though the previously
proposed numerical methods are satisfactory for finding the fundamental
vibration frequency, not enough attention has been paid to the problem of finding
the vibration frequency in more complicated cases. Probably, the previously
suggested methods have not exhausted the investigation in this field. In this paper,
more complicated cases are considered, which include consideration of the varying
cross section, the rotary inertia and the shear effect. In addition, a novel numerical
method is developed in this paper. In the method, the problem for evaluating the
natural vibration frequencies of a bar can be reduced to finding zeros of a target
function. The details will be described in the following analysis.

2. 

The governing equation for a bending bar considering the following factors: (a)
the translation inertia, (b) the rotary inertia and (c) the shear effect of materials
was proposed in [1, 3]. In this case, one has to introduce two functions w(x, t) and
c(x, t), where w(x, t) is the deflection of the bending bar and c(x, t) is the rotation
of a section, x is the position of a bar section, and t is the time variable (Figure 1).
In the free vibration analysis, after letting

w(x, t)=W(x) sin (vt), c(x, t)=C(x) sin (vt), (1)

the governing equation takes the form

d
dx $kGA(x)0C−

dW
dx 1%−v2rA(x)W=0, (0E xEL) (2)
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Figure 1. A truncated conical bar with two simply supported ends.

d
dx $EI(x)

dC

dx%− kGA(x)0C−
dW
dx 1+ bv2rI(x)C=0, (0E xEL) (3)

where v denotes vibration frequency, A(x) is the area of section, I(x) is the
moment inertia of section, G is the shear modulus of elasticity, E=2G(1+ n) is
the Young’s modulus of elasticity, r is the mass density of materials, and [3]

k=(6+6n)/(7+6n). (4)

The parameter b in (3) plays the following role: if the rotary inertia effect of the
section is considered, we choose b=1; otherwise we take b=0. In this paper, the
bar has a truncated conical configuration (Figure 1), and the two functions I(x)
and A(x) will be

I(x)= I0g(x), with I0 = I(0)=
pa4

4
, g(x)=01+

mx
L 1

4

(5)

A(x)=A0h(x), with A0 =A(0)= pa2, h(x)=01+
mx
L 1

2

. (6)

In the present study, it is assumed that the two ends of the bar are simply
supported. Therefore, the boundary value conditions will be

W=x=0 =0,
dC

dx bx=0

=0 (7a)

W=x=L =0,
dC

dx bx=L

=0. (7b)
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If the shear effect is not considered, we prefer to reduce the mentioned governing
equations. In fact, eliminating the term kGA(x)(C−dW/dx) in (3) by using (2),
and substituting C by dW/dx, yields

d2

dx $EI(x)
d2W
dx2 %−v2rA(x)W+ bv2r

d
dx $I(x)

dW
dx %=0, (0E xEL)

(8)

where the meaning of notations has been indicated above. The boundary
conditions become

W=x=0 =0,
d2W
dx2 bx=0

=0 (9a)

W=x=L =0,
d2W
dx2 bx=L

=0. (9b)

There are four types of frequency problems investigated below. To distinguish the
characteristics of the four types, the governing equations and the boundary
conditions for four types are listed in Table 1.

Previously, it has been pointed out that the eigenvalue problem of differential
equation can be considered as a particular initial boundary value problem of the
same equation [4, 5]. Following this idea, the target function method is suggested.
In fact, the solution technique for four types of frequency equations is the same.
The solution for types C and D will be introduced. In fact, for any given v, we
can solve the following initial boundary value problem

W=x=0 =0,
dC

dx bx=0

=0,
dW
dx bx=0

=1,

C=x=0 =0 (the fundamental problem P) (10)

T 1

Classification of the studied frequency problems

Consideration of Consideration of Governing Boundary
rotary inertia shear effect equations conditions

Type A No No (8) b=0 (9a), (9b)
Type B Yes No (8) b=1 (9a), (9b)
Type C No Yes (2), (3) b=0 (7a), (7b)
Type D Yes Yes (2), (3) b=1 (7a), (7b)
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W=x=0 =0,
dC

dx bx=0

=0,
dW
dx bx=0

=0,

C=x=0 =1 (the fundamental problem Q). (11)

Note that both boundary conditions given by equations (10) and (11) contain
the simply supported condition at the point x=0, which was shown by (7a). The
relevant solution is called the fundamental solution P or Q, respectively.
The solutions obtained are denoted by

W= p1(x, v), C= p2(x, v),

(0E xEL) (for the fundamental problem P) (12)

W= q1(x, v), C= q2(x, v),

(0E xEL) (for the fundamental problem Q). (13)

Note that, for example, p1(x, v), p2(x, v), (0E aEL) are obtained in the form
of a numerical solution, rather than in the form of an analytical solution. That
is to say, from the governing equations (2) and (3) and the initial boundary
condition (10), we can obtain the values of functions p1(x, v), dp1(x, v)/dx,
p2(x, v), dp2(x, v)/dx at the discrete points x=0, L/N, 2L/N, 3L/N, . . . , L,
where N is the division number used in integration of an ordinary differential
equation. The numerical solution mentioned can be obtained easily by using the
well known Runge–Kutta integration rule [6, p. 290], and the solution technique
is cited in the Appendix.

Clearly, we can seek the general solution in the form

W(x, v)= c1p1(x, v)+ c2q1(x, v) (14)

C(x, v)= c1p2(x, v)+ c2q2(x, v). (15)

Substituting (14) and (15) into (7b) yields

c1p1(L, v)+ c2q1(L, v)=0, c1p'2 (L, v)+ c2q'2 (L, v)=0. (16)

In order that a non-trivial solution for c1, c2 exists, the relevant determinant should
vanish. Therefore, from equation (16) we have the following equation

T(v)=0 (17)

where

T(v)= p1(L, v)q'2 (L, v)− q1(L, v)p'2 (L, v). (18)

This function is called the target function in this paper. Thus, the eigenvalues are
equal to finding zeros of the target function. The zeros of the target function T(v)
can be easily obtained by using the half-division method in numerical
computation.

3.  

Numerical results are presented to verify the accuracy of the solution. In
addition, the rotary inertia effect and the shear effect can also be found from the
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present examples. In computation, N=40 divisions are used in the numerical
integration of the ordinary differential equation, and n=0·3 is assumed.

3.1. Numerical solution for the problem of type A (see Table 1)

In the first case, both the rotary inertia effect and shear effect have not been
considered. The calculated results for the natural frequency are expressed by

v= f(m)0EI0

rA01
1/2

0pL1
2

. (19)

The results for the first six natural frequencies are listed in Table 2. From Table 2
we see that in the constant section case [m=0 in (5), (6)], the deviation between
the numerical computation and the analytical solution is negligible.

3.2. Numerical solution for the problem of type B (see Table 1)

In the second case, the rotary inertia effect of the section is considered and the
shear effect has not been considered. The calculated results for the natural
frequency are expressed by

v=B0m,
a
L10EI0

rA01
1/2

0pL1
2

. (20)

The results for the first six natural frequencies are listed in Table 3 for two cases
a/L=0·05 and a/L=0·1. In this case, the coefficients B(m, a/L) depend not only
on the factor (m) but also on the ratio (a/L). From the calculated results we see
that in the case of a/L=0·05, the influence of the rotary inertia on the
fundamental frequency is not significant. However, in an extreme case (m=4,
a/L=0·1) the 6th frequency is reduced from 95·698 to 35·265.

T 2

The first six normalized natural frequency f(m) for the problem of type A [see
Figure 1, Table 1 and equation (19)]

1st 2nd 3rd 4th 5th 6th

m=0 1·000 4·000 9·000 16·003 25·009 36·027
m=0* 1·000 4·000 9·000 16·000 25·000 36·000
m=1 1·410 5·899 13·219 23·439 36·579 52·644
m=2 1·719 7·686 17·123 30·247 47·094 67·694
m=3 1·978 9·417 20·871 36·738 57·081 81·948
m=4 2·206 11·115 24·522 43·031 66·733 95·698

* Exact.
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T 3

The first six normalized natural frequency B(m, a/L) for the problem of type B [see
Figure 1, Table 1 and equation (20)]

1st 2nd 3rd 4th 5th 6th

a/L=0·05 case
m=0 0·997 3·952 8·761 15·267 23·278 32·588
m=1 1·398 5·742 12·482 21·272 31·675 43·282
m=2 1·691 7·337 15·582 25·918 37·699 50·408
m=3 1·922 8·779 18·211 29·598 42·165 55·381
m=4 2·110 10·083 20·450 32·543 45·546 58·979

a/L=0·10 case
m=0 0·988 3·816 8·142 13·550 19·667 26·213
m=1 1·366 5·339 10·846 17·207 23·954 30·845
m=2 1·614 6·524 12·668 19·366 26·226 33·099
m=3 1·779 7·451 13·944 20·755 27·601 34·410
m=4 1·885 8·182 14·871 21·710 28·516 35·265

3.3. Numerical solution for the problem of type C (see Table 1)

In the third case, the rotary inertia effect of the section is not considered and
the shear effect has been considered. The calculated results for the natural
frequency are also expressed by

v=C0m, aL10EI0

rA01
1/2

0pL1
2

. (21)

The results for the first six natural frequencies are listed in Table 4 for two cases:
a/L=0·05 and a/L=0·1. From the calculated results we see that in the case of

T 4

The first six normalized natural frequency C(m, a/L) for the problem of type C [see
Figure 1, Table 1 and equation (21)]

1st 2nd 3rd 4th 5th 6th

a/L=0·05 case
m=0 0·991 3·863 8·364 14·092 20·751 28·031
m=1 1·381 5·485 11·371 18·395 26·033 33·966
m=2 1·657 6·835 13·578 21·149 29·047 37·045
m=3 1·866 7·972 15·223 23·000 30·922 38·857
m=4 2·030 8·930 16·465 24·293 32·170 40·029

a/L=0·10 case
m=0 0·966 3·523 7·004 10·893 14·919 18·968
m=1 1·305 4·624 8·519 12·536 16·537 20·500
m=2 1·503 5·353 9·326 13·293 17·218 21·107
m=3 1·619 5·851 9·801 13·712 17·581 21·425
m=4 1·680 6·199 10·104 13·973 17·805 21·620
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T 5

The first six normalized natural frequency F(m, a/L) for the problem of type D [see
Figure 1, Table 1 and equation (22)]

1st 2nd 3rd 4th 5th 6th

a/L=0·05 case
m=0 0·988 3·822 8·179 13·685 20·010 26·903
m=1 1·371 5·374 11·005 17·664 24·920 32·512
m=2 1·631 6·631 13·035 20·241 27·833 35·527
m=3 1·818 7·666 14·533 22·017 28·376 29·894
m=4 1·950 8·523 15·707 22·955 23·990 31·134

a/L=0·10 case
m=0 0·955 3·421 6·722 10·418 14·291 18·237
m=1 1·272 4·432 8·144 12·040 13·698 16·005
m=2 1·429 5·091 8·880 9·892 12·883 16·200
m=3 1·486 5·536 7·804 9·529 13·340 14·680
m=4 1·475 5·805 6·736 9·842 13·481 13·924

a/L=0·05, the influence of the shear effect on the fundamental frequency is not
significant. However, in an extreme case (m=4, a/L=0·1), the 6th frequency is
reduced from 95·698 to 21·620.

3.4. Numerical solution for the problem of type D (see Table 1)

In the fourth case, both the rotary inertia effect of section and shear effect have
been considered. The calculated results for the natural frequency are also expressed
by

v=F0m,
a
L10EI0

rA01
1/2

0pL1
2

. (22)

The results for the first six natural frequencies are listed in Table 5 for two cases:
a/L=0·05 and a/L=0·1. From the calculated results we see that in the case of
m=0 and a/L=0·05, the influence of the rotary inertia and shear effect on the
fundamental frequency is not significant. However, in an extreme case (m=4,
a/L=0·1), the 6th frequency is reduced from 95·698 to 13·924. From the above
mentioned results we see that both the rotary effect and the shear effect have
contributed to a lowering of the relevant vibration frequency.

4. 

Previously, when the computer was not available, investigators paid attention
to the solution which could be performed manually by using very elementary
computation. In contrast, the present study is an attempt to use the computer
intensively, and the goal is achieved by using the suggested method. In fact, the
mentioned target function T(v) can be obtained as a result of the numerical
solution of the ordinary differential equation, which can easily be solved on the
computer. Secondly, it is also easy to find the zeros of the target function, for



   332

instance, by using the well known half-division technique. In fact, the mentioned
computation only uses a fraction of a second on the computer.
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

Numerical solution of the ordinary differential equations (2) and (3) under the initial
boundary value condition (10)

Generally, an ordinary differential equation with higher order derivative can be
reduced to a simultaneous equation with the first order derivative. To solve (2)
and (3), we make a substation as follows

W1(x)=W(x), W2(x)=dW/dx, W3(x)=C(x), W4(x)=dC/dx. (A1)

In this case, (2) and (3) are reduced to a simultaneous equation

dW1

dx
=F1(W1, W2, W3, W4, x, v)

dW2

dx
=F2(W1, W2, W3, W4, x, v)

dW3

dx
=F3(W1, W2, W3, W4, x, v)

dW4

dx
=F4(W1, W2, W3, W4, x, v) (A2)

where

F1(W1, W2, W3, W4, x, v)=W2

F2(W1, W2, W3, W4, x, v)=
1

h(x) 0h(x)W4 − h'(x)(W2 −W3)

−
v2r

E
2(1+ n)

k
h(x)W11
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F3(W1, W2, W3, W4, x, v)=W4

F4(W1, W2, W3, W4, x, v)=
1

g(x) 0−g'(x)W4 +
k

2(1+ n)
A0

I0
h(x)(W3 −W2)

− b
v2r

E
g(x)W31 (A3)

and where the functions g(x), h(x), and A0, I0 and have been indicated in (5) and
(6), and the meaning of E, n, k, r, v, b can be found from the text. From (10),
the boundary condition becomes

W1=x=0 =0, W4=x=0 =0, W2=x=0 =1, W3=x=0 =0. (A4)

The simultaneous equation (A1) under the initial boundary value condition (A4)
can be easily solved numerically by using the Runge–Kutta method [6, p. 290].
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